Abstract
To control movement of any type, the neural system requires perceptual information to distinguish what actions are possible in any given environment. The behavior aimed at collecting this information, termed “exploration”, is vital for successful movement control. Currently, the main function of exploration is understood in the context of specifying the requirements of the task at hand. To accommodate for agency and action-selection, we propose that this understanding needs to be supplemented with a function of exploration that logically precedes the specification of action requirements with the purpose of discovery of possibilities for action—action orientation. This study aimed to provide evidence for the delineation of exploration for action orientation and exploration for action specification using the principles from “General Tau Theory.” Sixteen male participants volunteered and performed a laboratory-based exploration task. The visual scenes of different task-specific situations were projected on five monitors surrounding the participant. At a predetermined time, the participant received a simulated ball and was asked to respond by indicating where they would next play the ball. Head movements were recorded using inertial sensors as a measure of exploratory activity. It was shown that movement guidance characteristics varied between different head turns as participants moved from exploration for orientation to exploration for action specification. The first head turn in the trial, used for action-orientation, showed later peaks in the velocity profile and harder closure of the movement gap (gap between the start and end of the head-movement) in comparison to the later head turns. However, no differences were found between the first and the final head turn, which we hypothesized are used mainly for action orientation and specification respectively. These results are in support of differences in the function and control of head movement for discovery of opportunities for action (orientation) vs. head movement for specification of task requirements. Both are important for natural movement, yet in experimental settings,orientation is often neglected. Including both orientation and action specification in an experimental design should maximize generalizability of an experiment to natural behavior. Future studies are required to study the neural bases of movement guidance in order to better understand exploration in anticipation of movement.
Highlights
The understanding of perceptual guidance of movement has developed from research that describes the reciprocal relation between perception and action
As a means to assess the characteristics of the control of movement in support of exploration for action-orientation vis-à-vis exploration for action specification, the current study investigated the head movements performed by individuals when they explore their environment in a 360-degree taskenvironment, such as those encountered in the invasionsport scenario
In order to interpret the results for this analysis, it should be noted that the Linear Mixed Effects (LME) only identifies what conditions (Head Movement numbers) can be modeled with a coefficient significantly different from the mean of all head movements
Summary
The understanding of perceptual guidance of movement has developed from research that describes the reciprocal relation between perception and action. Agency and ongoing action can, be understood as emerging from the competition between affordances when multiple actions are afforded simultaneously (Cisek, 2007; Cisek and Kalaska, 2010; Barsingerhorn et al, 2013). In this context, exploratory action, the movements aimed at revealing information about (future) affordances, is of vital importance in driving individual-environment interactions. Previous research on perceptual exploration focusses heavily on the actualization of affordances and the specification of action requirements, whilst studies on orientation, i.e., on the behavior aimed at identifying potential future opportunities for action are under-represented. The current study aimed to present evidence supporting the distinction between orienting and specifying exploratory movements in natural behavior
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have