Abstract

Although we routinely experience complex tactile patterns over our entire body, how we selectively experience multisite touch over our bodies remains poorly understood. Here, we characterized tactile search behavior over the full body using a tactile analog of the classic visual search task. On each trial, participants judged whether a target stimulus (e.g., 10-Hz vibration) was present or absent anywhere on the body. When present, the target stimulus could occur alone or simultaneously with distractor stimuli (e.g., 30-Hz vibrations) on other body locations. We systematically varied the number and spatial configurations of the distractors as well as the target and distractor frequencies and measured the impact of these factors on tactile search response times. First, we found that response times were faster on target-present trials compared with target-absent trials. Second, response times increased with the number of stimulated sites, suggesting a serial search process. Third, search performance differed depending on stimulus frequencies. This frequency-dependent behavior may be related to perceptual grouping effects based on timing cues. We constructed linear models to explore how the locations of the target and distractor cues influenced tactile search behavior. Our modeling results reveal that, in isolation, cues on the index fingers make relatively greater contributions to search performance compared with stimulation experienced on other body sites. Additionally, costimulation of sites within the same limb or simply on the same body side preferentially influence search behavior. Our collective findings identify some principles of attentional search that are common to vision and touch, but others that highlight key differences that may be unique to body-based spatial perception.NEW & NOTEWORTHY Little is known about how we selectively experience multisite touch patterns over the body. Using a tactile analog of the classic visual target search paradigm, we show that tactile search behavior for flutter cues is generally consistent with a serial search process. Modeling results reveal the preferential contributions of index finger stimulation and two-site stimulus interactions involving ipsilateral patterns and within-limb patterns. Our results offer initial evidence for spatial and temporal principles underlying tactile search behavior over the body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call