Abstract

Background Cardiac resynchronization therapy (CRT) is effective for selected heart failure (HF) patients, but is associated with a 30-40% nonresponse rate. Identification of CRT responders may be improved with myocardial strain imaging. The circumferential uniformity ratio estimate (CURE ) measures mechanical dyssynchrony by Fourier series fitting of myocardial strains over space, but requires user interaction to define a range of cardiac phases over which CURE is calculated (time dependence). We hypothesize that principal component analysis (PCA) can quantify dyssynchrony in myocardial strain in a data-driven, time-independent manner that does not require any subjective user assessments of strain data.

Highlights

  • Cardiac resynchronization therapy (CRT) is effective for selected heart failure (HF) patients, but is associated with a 30-40% nonresponse rate

  • The circumferential uniformity ratio estimate (CURE )[1] measures mechanical dyssynchrony by Fourier series fitting of myocardial strains over space, but requires user interaction to define a range of cardiac phases over which CURE is calculated

  • Dyssynchronous HF was induced in canines (N=5) with tachycardia pacing and left bundle branch ablation (LBBB-HF), while synchronous HF with narrow QRS (NQRS-HF) was induced in canines with tachycardia pacing only (N=5)

Read more

Summary

Background

Cardiac resynchronization therapy (CRT) is effective for selected heart failure (HF) patients, but is associated with a 30-40% nonresponse rate. Identification of CRT responders may be improved with myocardial strain imaging. The circumferential uniformity ratio estimate (CURE )[1] measures mechanical dyssynchrony by Fourier series fitting of myocardial strains over space, but requires user interaction to define a range of cardiac phases over which CURE is calculated (time dependence). We hypothesize that principal component analysis (PCA) can quantify dyssynchrony in myocardial strain in a data-driven, time-independent manner that does not require any subjective user assessments of strain data

Methods
Results
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call