Abstract
Investigates the use of linear and nonlinear principal manifolds for learning low-dimensional representations for visual recognition. Several leading techniques - principal component analysis (PCA), independent component analysis (ICA) and nonlinear kernel PCA (KPCA) - are examined and tested in a visual recognition experiment using 1,800+ facial images from the "FERET" (FacE REcognition Technology) database. We compare the recognition performance of nearest-neighbor matching with each principal manifold representation to that of a maximum a-posteriori (MAP) matching rule using a Bayesian similarity measure derived from dual probabilistic subspaces. The experimental results demonstrate the simplicity, computational economy and performance superiority of the Bayesian subspace method over principal manifold techniques for visual matching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.