Abstract

The inverse Gaussian regression model (IGRM) is applied when the response variable is continuous, positively skewed and well fitted to the inverse Gaussian distribution. In the presence of multicollinearity, the maximum likelihood estimation (MLE) is not a right choice. Therefore, we proposed a new estimator called the principal component ridge estimator for the IGRM which combines the principal component estimator and the ridge estimator. We also consider a two-parameter estimator (TPE) and other biased estimators to see a clear image of our proposed estimator. A Monte Carlo simulation study is also presented to examine the performance of the proposed estimators. Furthermore, we analysed a dataset to assess the superiority of the proposed estimator. Based on the simulation and application results, it is evident that the proposed estimator dominates the classical MLE, and other considered biased estimation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.