Abstract
Principal component analysis (PCA) method is applied and compared with the line ratios of H-like and He-like transitions, in order to investigate the effects of electron beam on the K-shell Aluminum synthetic spectra. It is also used as a diagnostics to estimate the plasma parameters of K-shell Al X-pinch plasma spectrum. This spectrum is produced by the explosion of two 25-μm Al wires on a compact LC (40 kV, 200 kA) generator. The database for the principal component extraction is created over a previously developed, non-LTE, collisional radiative K-shell Aluminum model. As a result, PCA shows an agreement with the line ratios which are sensitive to plasma electron temperatures, densities and beam fractions. Principal component analysis also illustrates that the addition to the non-LTE model of a fraction f of electrons in an energetic beam, generates the clusters in a three dimensional vector space which are translations of each other and follows reverse v-shaped cascade trajectories, except for the f = 0.0 case. Modeling of a typical shot by PCA gives the plasma electron temperature of Te = 100 eV, density of Ne = 1 × 1020 cm−3 and hot electron fraction of f = 0.2 (with a beam energy centered at 10 keV).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.