Abstract
We present the possibility that the seesaw mechanism and nonthermal leptogenesis can be investigated via primordial non-Gaussianities in the context of a majoron curvaton model. Originating as a massless Nambu-Goldstone boson from the spontaneous breaking of the global baryon (B) minus lepton (L) number symmetry at a scale vB−L, majoron becomes massive when it couples to a new confining sector through anomaly. Acting as a curvaton, majoron produces the observed red-tilted curvature power spectrum without relying on any inflaton contribution, and its decay in the post-inflationary era gives rise to a nonthermal population of right-handed neutrinos that participate in leptogenesis. A distinctive feature of the mechanism is the generation of observable non-Gaussianity, in the parameter space where the red-tilted power spectrum and sufficient baryon asymmetry are produced. We find that the non-Gaussianity parameter fNL ≳ O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O} $$\\end{document}(0.1) is produced for high-scale seesaw (vB−L at O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O} $$\\end{document}(1014−17) GeV) and leptogenesis (M1 ≳ O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O} $$\\end{document}(106) GeV) where the latter represents the lightest right-handed neutrino mass. While the current bounds on local non-Gaussianity excludes some part of parameter space, the rest can be fully probed by future experiments like CMB-S4, LSST, and 21 cm tomography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.