Abstract

The NRAO VLA Sky Survey (NVSS) is the only dataset that allows an accurate determination of the auto-correlation function (ACF) on angular scales of several degrees for Active Galactic Nuclei (AGNs) at typical redshifts $z \simeq 1$. Surprisingly, the ACF is found to be positive on such large scales while, in the framework of the standard hierarchical clustering scenario with Gaussian primordial perturbations it should be negative for a redshift-independent effective halo mass of order of that found for optically-selected quasars. We show that a small primordial non-Gaussianity can add sufficient power on very large scales to account for the observed NVSS ACF. The best-fit value of the parameter $f_{\rm NL}$, quantifying the amplitude of primordial non-Gaussianity of local type is $f_{\rm NL}=62 \pm 27$ ($1\,\sigma$ error bar) and $25<f_{\rm NL}<117$ ($2\,\sigma$ confidence level), corresponding to a detection of non-Gaussianity significant at the $\sim 3\,\sigma$ confidence level. The minimal halo mass of NVSS sources is found to be $M_{\rm min}=10^{12.47\pm0.26}h^{-1}M_{\odot}$ ($1\,\sigma$) strikingly close to that found for optically selected quasars. We discuss caveats and possible physical and systematic effects that can impact on the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call