Abstract

In recent years, several pulsar timing array collaborations have reported first hints for a stochastic gravitational wave background at nano-Hertz frequencies. Here we elaborate on the possibility that this signal comes from new physics that leads to the generation of a primordial stochastic gravitational wave background. We propose a set of simple but concrete models that can serve as benchmarks for gravitational waves sourced by cosmological phase transitions, domain wall networks, cosmic strings, axion dynamics, or large scalar fluctuations. These models are then confronted with pulsar timing data and with cosmological constraints. With only a limited number of free parameters per model, we are able to identify viable regions of parameter space and also make predictions for future astrophysical and laboratory tests that can help with model identification and discrimination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.