Abstract

Here, we investigate the formation of primordial black holes (PBHs) in non-minimal coupling Gauss–Bonnet inflationary model in the presence of power-law potentials. We employ a two part coupling function to enhance primordial curvatures at small scales as well as satisfy Planck measurements at the CMB scale. Moreover, our model satisfies the swampland criteria. We find PBHs with different mass scales and demonstrate that PBHs with masses around O(10-14)M⊙\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {O}(10^{-14})M_{\\odot }$$\\end{document} can account for almost all of the dark matter in the universe. In addition, we investigate the implications of the reheating stage and show that the PBHs in our model are generated during the radiation-dominated era. Furthermore, we investigate the production of scalar-induced gravitational waves (GWs). More interestingly enough is that, for the specific cases Dn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$D_\ extrm{n}$$\\end{document} in our model, the GWs can be considered as a source of PTA signal. Also, we conclude that the GWs energy density parameter at the nano-Hz regime can be parameterized as ΩGW0(f)∼f5-γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega _\\mathrm{GW_0} (f) \\sim f^{5-\\gamma }$$\\end{document}, where the obtained γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma $$\\end{document} is consistent with the PTA Observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.