Abstract

As the power grid continues to evolve with advanced wide-area monitoring, protection, and control (WAMPAC) algorithms, there is an increasing need for realistic testbed environments with industry-grade software and hardware-in-the-loop (HIL) to perform verification and validation studies. Such testbed environments serve as ideal platforms to perform WAMPAC prototyping, operator training, and also to study the impacts of different types of cyberattack scenarios on the operation of the grid. In this study, the authors introduce pacific northwest national laboratory(PNNL) cyber-physical systems testbed (PRIME): the testbed that integrates real-time transmission system simulator with commercial industry-grade energy management system software and remote HIL (RHIL). PRIME is an end-to-end, modular testbed that allows high-fidelity RHIL experimentation of a power system. We present two detailed case studies (fault location and clearing in the transmission system and operator training) to show the capabilities of their PRIME testbed. Finally, we briefly discuss some of the potential limitations of their testbed in terms of scalability and flexibility to set up larger test systems and identify directions for future work to address these limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.