Abstract

BackgroundSocial and competitive demands often differ between the sexes in mammals. These differing demands should be expected to produce variation in the relative sizes of various brain structures. Sexual selection on males can be predicted to influence brain components handling sensory-motor skills that are important for physical competition or neural pathways involving aggression. Conversely, because female fitness is more closely linked to ecological factors and social interactions that enable better acquisition of resources, social selection on females should select for brain components important for navigating social networks. Sexual and social selection acting on one sex could produce sexual dimorphism in brain structures, which would result in larger species averages for those same brain structures. Alternatively, sex-specific selection pressures could produce correlated effects in the other sex, resulting in larger brain structures for both males and females of a species. Data are presently unavailable for the sex-specific sizes of brain structures for anthropoid primates, but under either scenario, the effects of sexual and social selection should leave a detectable signal in average sizes of brain structures for different species.ResultsThe degree of male intra-sexual selection was positively correlated with several structures involved in autonomic functions and sensory-motor skills, and in pathways relating to aggression and aggression control. The degree of male intra-sexual selection was not correlated with relative neocortex size, which instead was significantly positively correlated with female social group size, but negatively correlated with male group size.ConclusionSexual selection on males and social selection on females have exerted different effects on primate brain architecture. Species with a higher degree of male intra-sexual selection carry a neural signature of an evolutionary history centered on physical conflicts, but no traces of increased demands on sociocognitive tasks. Conversely, female sociality is indicated to have driven the evolution of socio-cognitive skills. Primate brain architecture is therefore likely to be a product of ecological and species-specific social factors as well as different sex-specific selection pressures. Our results also highlight the need for acquisition and analysis of sex-specific brain components in mammals.

Highlights

  • Social and competitive demands often differ between the sexes in mammals

  • The telencephalon may have been the target of social selection differing between the sexes, as indicated by a negative correlation between relative telencephalon volume and male group size, but a positive correlation with female group size, whereas correlations in the opposite direction were found in analyses of the diencephalon (Table 1)

  • Whereas male group size was significantly negatively correlated with the relative volumes of the septum, schizocortex and perhaps the neocortex, female group size was positively correlated with relative neocortex volume [32] and negatively correlated with relative hippocampus volume (Table 2)

Read more

Summary

Introduction

Social and competitive demands often differ between the sexes in mammals. These differing demands should be expected to produce variation in the relative sizes of various brain structures. Sexual and social selection acting on one sex could produce sexual dimorphism in brain structures, which would result in larger species averages for those same brain structures. Sex-specific selection pressures could produce correlated effects in the other sex, resulting in larger brain structures for both males and females of a species. Data are presently unavailable for the sex-specific sizes of brain structures for anthropoid primates, but under either scenario, the effects of sexual and social selection should leave a detectable signal in average sizes of brain structures for different species. For example, this type of male intra-sexual selection has been shown to result in sexual size dimorphism in traits important for male combat, such as canine teeth [14,15] and body mass [16,17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.