Abstract
Molecular dynamics (MD) cascade simulations of single crystal and five bi-crystal structures in bcc tungsten (W) are conducted to investigate the role of grain boundaries (GBs) on defect production and the size distribution of defect clusters. The cascades in W with cascade energies of 10keV and 20keV are simulated at different distances from the GB plane at 4.2K, 300K and 900K, respectively. The results indicate that the defect production is sensitive to the specific distance between the PKA and the nearby GB. The size of vacancy clusters becomes larger when the overlap region between the cascade and GB is small. Meanwhile, the mean size of interstitial clusters becomes smaller. The number of interstitials decreases with increasing temperature, whereas the number of vacancies is independent of the temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.