Abstract

A novel algorithm to segment a primary object in a video sequence is proposed in this work. First, we generate candidate regions for the primary object using both color and motion edges. Second, we estimate initial primary object regions, by exploiting the recurrence property of the primary object. Third, we augment the initial regions with missing parts or reducing them by excluding noisy parts repeatedly. This augmentation and reduction process (ARP) identifies the primary object region in each frame. Experimental results demonstrate that the proposed algorithm significantly outperforms the state-of-the-art conventional algorithms on recent benchmark datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.