Abstract

We study the maximum integral multicommodity flow problem and the minimum multicut problem restricted to trees. This restriction is quite rich and contains as special cases classical optimization problems such as matching and vertex cover for general graphs. It is shown that both the maximum integral multicommodity flow and the minimum multicut problem are NP-hard and MAX SNP-hard on trees, although the maximum integral flow can be computed in polynomial time if the edges have unit capacity. We present an efficient algorithm that computes a multicut and integral flow such that the weight of the multicut is at most twice the value of the flow. This gives a 2-approximation algorithm for minimum multicut and a 1/2-approximation algorithm for maximum integral multicommodity flow in trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call