Abstract

Dandanes se pojavlja vse več učnih sistemov, ki podpirajo aktivno učenje in upoštevajo učenčeve učne lastnosti, značilnosti in aktivnosti. V prispevku predstavljamo zasnovo učnega priporočilnega sistema, ki združuje znanja pedagogike in računalniških priporočilnih algoritmov. Proučujemo, kako združevanje modelov učnih stilov vpliva na izbiro različnih tipov večpredstavnih učnih gradiv. Rezultati kažejo, da študentje za učenje najpogosteje uporabljajo dobro strukturirana učna gradiva, ki vsebujejo barvno diskriminacijo, in da je hemisferični model učnih stilov najpomembnejši odločitveni kriterij. V nadaljevanju opisujemo postopek za reševanje t. i. problema hladnega zagona, s katerim je mogoče izboljšati točnost sistema za priporočanje učnih gradiv v okoljih, kjer o učencih nimamo predhodnih podatkov. Namen prispevka je predstaviti idejno zasnovo prilagodljivega učnega sistema z analizo njegovih predvidenih učinkov na učno prakso.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.