Abstract

The objective of this study is to elucidate how Royal jelly (RJ) and 10-hydroxy-2-decanoic acid (10-HDA) prevents diabetic skin dysfunction by modulating the pyroptosis pathway. Type 2 diabetes models are induced by fat diet consumption and low dose of streptozotocin (STZ) in C57BL/6J mice and treated with RJ (100 mg kg-1 day-1) and 10-HDA, the major lipid component of royal jelly (100 mg kg-1 day-1) for 28 weeks. The results show that serum concentrations of glucose and triglyceride are significantly lower in the RJ group or 10-HDA than diabetes mellitus (DM)group. Compared to the control group, pyroptosis proteins, GSDMD, ASC, Caspase-1, and IL-1β are increased in the skin of the diabetic model, accompanied by the activation of the Wnt/β-catenin signal pathway. Further evaluations by RJ exhibit superior improvement of skin damage, repress activation of the Wnt/β-catenin pathway, and attenuate keratinocyte pyroptosis, but 10-HDA cannot completely suppress the activation of Wnt/β-catenin pathway and pyroptosis, which shows a relatively weak protective effect on skin damage which shows that RJ is a better effect on skin injury after DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.