Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), which are commonly used in clinical medicine, cause erosion, ulcers, and bleeding in the gastrointestinal tract. No effective agent for the prevention and treatment of small intestinal injury by NSAIDs has been established. This study investigates the effects of agaro-oligosaccharides (AGOs) on NSAID-induced small intestinal injury in mice. Mice were treated with indomethacin, an NSAID, to induce intestinal injury. The respective degrees of mucosal injury of mice that received AGO and control mice were compared. Heme oxygenase-1 (HO-1) expression using quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were measured. The expression of keratinocyte chemoattractant (KC) was measured using qRT-PCR and enzyme-linked immunosorbent assay. AGO administration induced HO-1 expression in mouse small intestinal mucosa. Induction was observed mainly in F4/80 positive macrophages. The increased ulcers score, myeloperoxidase activity, and KC expression by indomethacin were inhibited by AGO administration. Conversely, HO inhibitor cancelled AGO-mediated prevention of intestinal injury. In mouse peritoneal macrophages, AGOs enhanced HO-1 expression and suppressed lipopolysaccharide-induced KC expression. Furthermore, AGOs enhanced the expressions of alternatively activated macrophage markers arginase-1, mannose receptor-1, and chitinase 3-like 3. Results suggest that oral administration of AGOs prevents NSAID-induced intestinal injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.