Abstract

The misfolding of islet amyloid polypeptide (IAPP, amylin) results in the formation of islet amyloid, which is one of the most common pathological features of type 2 diabetes (T2D). Amylin, a 37-amino-acid peptide co-secreted with insulin and apolipoprotein E (ApoE) from the β-cells of pancreatic islets, is thought to be responsible for the reduced mass of insulin-producing β-cells. However, neither the relationship between amylin and ApoE nor the biological consequence of amylin misfolding is known. Here we have characterized the interaction between ApoE4 and amylin in vitro. We found that ApoE4 can strongly bind to amylin, and insulin can hardly inhibit amylin–ApoE binding. We further found that amylin fibrillization can be prevented by low concentration of ApoE4 and promoted by high concentration of ApoE4. Taken together, we propose that under physiological conditions ApoE4 efficiently binds and sequesters amylin, preventing its aggregation, and in T2D the enhanced ApoE4–amylin binding leads to the critical accumulation of amylin, facilitating islet amyloid formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.