Abstract

Brucellosis is one of the most common etiologies of laboratory-acquired infections worldwide, and handling of living brucellae should be performed in a Class II biological safety cabinet. The low infecting dose, multiple portals of entry to the body, the wide variety of potentially contaminated specimens, and the unspecific clinical manifestations of human infections facilitate the unintentional transmission of brucellae to laboratory personnel. Work accidents such as spillage of culture media cause only a small minority of exposures, whereas >80% of events result from unfamiliarity with the phenotypic features of the genus, misidentification of isolates, and unsafe laboratory practices such as working on an open bench without protective goggles or gloves or the aerosolization of bacteria. The bacteriological diagnosis of brucellae by traditional methods is simple and straightforward but requires extensive manipulation of the isolates, and, nowadays, many laboratory technicians are not familiar with the genotypic features of the genus, resulting in inadvertent exposure and contagion. Detection of brucellar infections by culture-independent molecular methods is safe, but the identification of the organism using MALDI-TOF technology is not hazard-free, requiring an initial bacterial inactivation step to avoid transmission. Unfortunately, these novel and safer methods are costly and frequently unavailable in resource-limited endemic countries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call