Abstract

AbstractTurbulence facilitates collisions between particles suspended in a turbulent flow. Two effects have been proposed that can enhance the collision rate at high turbulence intensities: ‘preferential concentration’ (a clustering phenomenon) and the ‘sling effect’ (arising from the formation of caustic folds in the phase space of the suspended particles). We have determined numerically the collision rate of small heavy particles as a function of their size and densities. The dependence on particle densities allows us to quantify the contribution of the sling effect to the collision rate. Our results demonstrate that the sling effect provides the dominant mechanism to the enhancement of the collision rate of particles, when inertia becomes significant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.