Abstract

Azole resistance has emerged as a new therapeutic challenge in patients with aspergillosis. Various resistance mutations are attributed to the widespread use of triazole-based fungicides in agriculture. This study explored the prevalence of azole-resistant Aspergillus fumigatus (ARAF) and other aspergilli in the Argentine environment. A collection of A. fumigatus and other aspergilli strains isolated from soil of growing crops, compost, corn, different animal feedstuffs, soybean and chickpea seeds were screened for azole resistance. No ARAF was detected in any of the environmental samples studied. However, five A. flavus, one A. ostianus, one A. niger and one A. tamarii recovered from soybean and chickpea seeds showed reduced susceptibility to medical azole antifungals (MAA). The susceptibility profiles of five A. flavus isolates, showing reduced susceptibility to demethylase inhibitors (DMIs), were compared with those of 10 isolates that exhibited susceptibility to MAA. A. flavus isolates that showed reduced MAA susceptibility exhibited different susceptibility profile to DMIs. Prothioconazole and tebuconazole were the only DMIs significantly less active against isolates with reduced susceptibility to MAA. Although no ARAF isolates were found in the samples analysed, other aspergilli with reduced susceptibility profile to MAA being also important human pathogens causing allergic, chronic and invasive aspergillosis, are present in the environment in Argentina. Although a definitive link between triazole-based fungicide use and isolation of azole-resistant human pathogenic aspergilli from agricultural fields in Argentina remains elusive, this study unequivocally highlights the magnitude of the environmental spread of azole resistance among other Aspergillus species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.