Abstract
The overuse of antibiotics in livestock farms is general, leading to a wide distribution of antibiotic resistance genes (ARGs) in aquatic environment adjacent to livestock farms. However, researches of the distribution and types of ARGs in aquatic environment of China are still in the initial stage. In this study, wastewater and surface water samples were collected from 12 livestock farms (four pig farms, four cattle farms, and four chicken farms) in Jiangsu Province of China. The prevalence, abundance, and distribution of 22 ARGs were investigated, which were categorized into six groups, including nine tetracyclin resistance genes, three sulfonamides resistance genes, three quinolone resistance genes, two macrolide resistance genes, three aminoglycoside resistance genes, and two multidrug resistance genes, employing quantitative real-time PCR (qPCR). The results suggested that all of the 22 ARGs were detected in samples. Sul1, sul2, and tetM were the most abundant with the average concentration of 3.84 × 10(1) copies/16S recombinant RNA (rRNA) gene copies, 1.62 × 10(1) copies/16S rRNA gene copies, 2.33 × 10(1) copies/16S rRNA gene copies, respectively. Principle component analysis revealed that the comprehensive pollution of ARGs in northern Jiangsu was more serious. ARGs in wastewater were more abundant when compared to that in surface water. A preliminary study regarding the fate of ARGs after an aerobiotic process showed that tetA, tetC, sul1, sul2, oqxB, and qnrS were significantly increased. And, among the tetracycline resistance genes, the efflux pump genes were enriched while the ribosomal protection protein encoding genes were decreased in the aerobiotic process. The prevalance of ARGs in water environment is of concern; more surveillance is required to determine the pollution level and pattern of antibiotic resistance genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.