Abstract

Human bocavirus (HBoV) 1 is considered an important respiratory pathogen, while the role of HBoV2-4 in clinical disease remains somewhat controversial. Since, they are characterized by a rapid evolution, worldwide surveillance of HBoVs’ genetics is necessary. This study explored the prevalence of HBoV genotypes in pediatric patients with respiratory tract infection in Croatia and studied their phylogeny. Using multiplex PCR for 15 respiratory viruses, we investigated 957 respiratory samples of children up to 18 years of age with respiratory tract infection obtained from May 2017 to March 2021 at two different hospitals in Croatia. Amplification of HBoV near-complete genome or three overlapping fragments was performed, sequenced, and their phylogenetic inferences constructed. HBoV was detected in 7.6% children with a median age of 1.36 years. Co-infection was observed in 82.2% samples. Sequencing was successfully performed on 29 HBoV positive samples, and all belonged to HBoV1. Croatian HBoV1 sequences are closely related to strains isolated worldwide, and no phylogenetic grouping based on mono- or co-infection cases or year of isolation was observed. Calculated rates of evolution for HBoV1 were 10−4 and 10−5 substitutions per site and year. Recombination was not detected among sequences from this study.

Highlights

  • Human bocavirus (HBoV) was discovered 16 years ago by Allander et al using a new molecular method for screening respiratory samples collected from children who had respiratory tract infection (RTI) of unknown etiology [1]

  • This study was performed on 957 Croatian children hospitalized with RTI during period of four years revealed prevalence of HBoV of 7.6%

  • High HBoV detection in small children is corroborated by the results of this study; 86.2% of HBoV positive children were younger than three years of age

Read more

Summary

Introduction

Human bocavirus (HBoV) was discovered 16 years ago by Allander et al using a new molecular method for screening respiratory samples collected from children who had respiratory tract infection (RTI) of unknown etiology [1]. HBoV2-4 has been detected in samples from the respiratory tract but with a much lower frequency, their role in the pathogenesis of respiratory infections is unclear. Recent advances in molecular biology research of HBoV1 revealed that during its replication in the polarized/nondividing airway epithelial cells HboV1 expresses six nonstructural proteins: NP1, NS1, NS1-70, NS2, NS3, and NS4, depending on splicing mRNAs within ORF 1 [9]. HBoV1 expresses viral non-coding RNA (BocaSR) and three structural proteins VP1, VP2, and VP3. The BocaSR is the first identified RNA polymerase III (Pol III) transcribed viral non-coding RNA in small DNA viruses [9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.