Abstract

Laribacter hongkongensis is a food-borne bacterium associated with community-acquired gastroenteritis and diarrhoea. Quinolone resistance was recently reported in bacterial isolates from aquatic products, but the molecular mechanisms for resistance were still unknown. In this study, a total of 157 L. hongkongensis strains were isolated from grass carps (n = 443) and Chinese tiger frogs (n = 171). Twenty-one ciprofloxacin-resistant strains were analysed for mutations in quinolone resistance-determining regions (QRDR), acquired quinolone resistance (AQR) genes and the role of efflux pumps in resistance. All QRDR mutations in gyrA (codons 85 and 89) and parC (codons 83 and 231) were found to be closely associated with ciprofloxacin resistance. The AQR gene aac(6')-Ib-cr was found in 42.9% (9/21) of the resistant strains, but qnrA, qnrB, qnrC, qnrD, qnrS and qepA were not detected. No significant change of MICs to ciprofloxacin was observed in the presence of an efflux pump inhibitor, indicating the role of efflux pump was probably absent. All 21 ciprofloxacin-resistant strains showed different electrophoretic patterns, which suggested they were not genetically related. These data highlight the importance of QRDR mutations and the AQR gene aac(6')-Ib-cr during the development of quinolone resistance in a heterogeneous population of L. hongkongensis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.