Abstract
This study identified and characterized extended-spectrum-β-lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) from farmed freshwater fish and pig offal procured from the wet markets across Hong Kong. During March 2018 to January 2019, 730 food animal samples, namely, 213 snakehead fish, 198 black carp, and 339 pig organs, were examined. ESBL-E and CPE were isolated from the homogenized samples plated on selective media and identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). All ESBL-E and CPE strains were tested for antimicrobial susceptibilities. ESBL-E and CPE gene groups were detected by multiplex PCR and blaCTX-M-1/-2/-9 group strains were Sanger sequenced for CTX-M types. All CPE isolates were whole-genome sequenced. Isolation of ESBL-E from pig small (52.4%) and large (50%) intestines and tongues (25.1%) was significantly (P < 0.05) more frequent than from snakehead (0.94%) and black carp (0.5%) fish. ESBL-E isolates (n = 171) revealed resistance rates of 16.3%, 29.8%, 35.6%, 53.2%, 55.0%, and 100% to piperacillin-tazobactam, amoxicillin-clavulanate, cefepime, gentamicin, ciprofloxacin, and ampicillin, respectively, whereas CPE (n = 28) were resistant to almost all the antibiotics tested except gentamicin, ciprofloxacin, and fosfomycin. The predominant ESBL gene groups in fishes and pig offals were blaCTX, where blaCTX-M-55 was the major subtype in the blaCTX-M-1 group (64.4% of isolates in the group). blaCTX-M-14/-17 was the major genotype in the blaCTX-M-9 group (32.2%). All CPE strains possessed blaNDM genes. High rates of ESBL-E and CPE were identified in food animals from wet markets of Hong Kong, which may serve as a potential reservoir of antimicrobial-resistant genes and increase the challenges in tackling antimicrobial resistance beyond health care settings.IMPORTANCE Extended-spectrum-β-lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) are of global health importance, yet there is a paucity of surveillance studies on food animals in Hong Kong. Here, we report a high prevalence of ESBL-E (ranging from 0.5% to 52.4%) and CPE (0% to 9.9%) from various food animal samples procured from wet markets across Hong Kong. All CPE strains were characterized by whole-genome sequencing and possessed NDM-1 and -5 genes and other resistance determinants. Given the increased resistance profile of these strains, this study highlights the emerging threat of ESBL-E and CPE disseminated in farmed animals. Furthermore, our data enriched our understanding of antibiotic resistance reservoirs from a One Health perspective that can widely spread across various niches, beyond health care settings.
Highlights
This study identified and characterized extended-spectrum--lactamaseproducing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) from farmed freshwater fish and pig offal procured from the wet markets across Hong Kong
ESBL-E and 28 CPE strains were isolated in our study from 411 fish and 339 pig organs that were purchased in wet markets across all 18 districts of Hong Kong
There are limited data on the surveillance of ESBL-E and CPE in aquaculture and food animals, albeit similar data have been extensively reported in health care settings [19]
Summary
This study identified and characterized extended-spectrum--lactamaseproducing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) from farmed freshwater fish and pig offal procured from the wet markets across Hong Kong. High rates of ESBL-E and CPE were identified in food animals from wet markets of Hong Kong, which may serve as a potential reservoir of antimicrobial-resistant genes and increase the challenges in tackling antimicrobial resistance beyond health care settings. IMPORTANCE Extended-spectrum--lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) are of global health importance, yet there is a paucity of surveillance studies on food animals in Hong Kong. Extended-spectrum--lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) are making a significant impact on antimicrobial resistance (AMR) due to their capability of horizontal gene transfer to other bacteria [1,2,3,4]. In addition to increased AMR awareness among professionals and consumers, surveillance systems for animal antibiotic use and antimicrobial resistance improve animal husbandry and are cornerstones to promote rational antibiotic use in animals [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.