Abstract
Sevoflurane impairs learning and memory of the developing brain. However, strategies to mitigate these detrimental effects have been scarce. Herein, we investigated whether tetramethylpyrazine could alleviate the impairment of learning and memory and its underlying mechanisim in sevoflurane-exposed neonatal rats. Postnatal 7-day Sprague-Dawley (SD) rats or primary hippocampal neurons were pretreated with tetramethylpyrazine and then exposed to sevoflurane. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and lactate dehydrogenase (LDH) assays were used to detect neuronal injury. Learning and memory function were evaluated by novel object recognition and Morris water maze tests. Long-term potentiation (LTP) was recorded to evaluate synaptic plasticity electrophysiologically in the hippocampal slices. Golgi-Cox staining or PSD95 immunochemistry was used to detect the morphology of dendritic spines. Western blotting was employed to assess the expressions of cleaved Caspase-3, PSD95, NMDAR1, NMDAR2A and NMDAR2B in the hippocampus or cultured neurons. It was found that neonatal exposure of sevoflurane impaired learning and memory, increased neuronal apoptosis, altered the morphology of dendritic spine, upregulated the expressions of NMDAR2A and PSD95, and induced LTP deficits. Pretreatment with tetramethylpyrazine not only alleviated impairment of learning and memory, but also improved sevoflurane-induced changes in neuronal damage, dendritic spine morphology, NMDAR2A and PSD95 expressions, as well as LTP. These findings indicated that pretreatment with tetramethylpyrazine alleviated the impairment of learning and memory induced by sevoflurane through improvement of hippocampal synaptic plasticity in neonatal rats.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have