Abstract

Pretreatment of sweet sorghum bagasse, an energy crop residue, with NaOH for the production of fermentable substrates, was investigated. Optimal conditions for the alkaline pretreatment of sweet sorghum bagasse were realized at 10% NaOH (w/w dry matter). A delignification of 46% was then observed, and improved significantly the efficiency of enzymatic hydrolysis. Under hydrolysis conditions without pH control, up to 50% and 41% of the cellulose and hemicellulose contained in NaOH-pretreated sweet sorghum bagasse were converted by 24 h enzymatic hydrolysis to soluble monomeric sugars. The extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus showed normal growth on hydrolysates of NaOH-pretreated biomass up to a sugar concentration of 20 g/L. Besides hydrogen, the main metabolic products detected in the fermentations were acetic and lactic acid. The maximal hydrogen yield observed in batch experiments under controlled conditions was 2.6 mol/mol C6 sugar. The maximal volumetric hydrogen production rate ranged from 10.2 to 10.6 mmol/(L h). At higher substrate concentrations the production of lactic acid increased at the expense of hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call