Abstract

Pretreatment is one of the most important steps in the production of bioethanol from renewable feedstocks like lignocellulosic biomass, however, existing pretreatment approaches have some limitations. In this context, two different acid-functionalized magnetic nanoparticles (MNPs) i.e. alkylsulfonic acid (Fe3O4-MNPs@Si@AS) and butylcarboxylic acid (Fe3O4-MNPs@Si@BCOOH) were synthesized and evaluated for their efficacy at different concentration in the pretreatment of sugarcane bagasse. It was observed that both of these acid-functionalized MNPs showed concentration-dependent promising catalytic activity as compared to conventional acid pretreatment. Both Fe3O4-MNPs@Si@AS and Fe3O4-MNPs@Si@BCOOH at 500 mg/g of bagasse showed the maximum amount of sugar (xylose) liberated i.e. 18.83 g/L and 18.67 g/L, respectively which are comparatively higher than the normal acid pretreatment (15.40 g/L) and untreated sample (0.28 g/L). Further, both the acid-functionalized MNPs used were recovered by applying magnetic field and reused for next two subsequent cycles of pretreatment. Therefore, such nanotechnology-based approaches can be used as a rapid and eco-friendly alternative method for the pretreatment of a variety of lignocellulosic materials. Moreover, the reuse of the same MNPs for more than one cycle of pretreatment can also help to reduce the cost involved in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.