Abstract

The study aimed to utilize the industrial spent seaweed biomass (SSB) for effective ethanol production using yeast as a fermenting microorganism. Pretreatment of SSB was optimized using different acids. The highest percentage of spent biomass was obtained from G. corticata (12.53 ± 2.66% DW). The proximate, ultimate and biochemical constituents of spent biomass were calculated. The total sugar (440 ± 40 mg/g DW), reducing sugar (129.85 ± 10.23 mg/g DW) and protein (11.08 ± 0.11 mg/g DW) content of SSB were analysed. Pretreatment was optimized using three different acids. The effect of different pH (4.5, 5.0, 5.5 and 6.0) and temperature (30 and 35 °C) on ethanol production using baker’s and MTCC yeast was studied. At 35 °C, the maximum (4.85% w/w) ethanol production was achieved in a fermentation process maintained at pH 4.5 and 5.0 at 24 h and 72 h, respectively. Substrate fermented with MTCC yeast recorded the maximum production of ethanol (4.98% w/w) at pH 4.5 within 48 h. The fermentation process was scaled up to 300 mL for ethanol production, and achieved 3.75% w/w ethanol (72 h, pH 5.5). To conclude, in future SSB would be a potential renewable novel substrate for bioethanol production when compared to other lignocellulosic substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.