Abstract
The mitral cell of the olfactory bulb is the primary relay neuron that transmits information from the olfactory receptors to the rest of the brain. This excitatory neuron releases glutamate from presynaptic dendrites and axon terminals. All rat mitral cells studied showed strong, selective, and widespread metabotropic glutamate receptor mGluR1 alpha immunoreactivity on the presynaptic membrane of dendrites, often at the synaptic vesicle release site, when examined with light and electron microscopy. The finding of glutamate receptors on mitral cell secondary dendrites supports the conclusion that not all dendritic membrane with glutamate receptors necessarily have gray type I asymmetrical synaptic specializations. In contrast, the metabotropic glutamate receptor mGluR5 was not found in mitral cells but was expressed by granule cells and astrocytes around mitral dendrites. Both mGluR1 alpha and mGluR5 were expressed early in development, with strong immunostaining present by postnatal day 1. MGluR1 alpha staining at birth mirrored the adult staining pattern. MGluR5 staining at birth showed different patterns of immunostaining than that found in the adult, particularly in the external plexiform layer. In vitro olfactory bulb neurons and their dendrites from embryonic day (E) 18 olfactory bulbs responded to t-ACPD and quisqualate, selective and nonselective metabotropic glutamate receptor agonists, and to several ionotropic glutamate agonists with increases in intracellular Ca2+ as studied with fura-2 digital imaging. These data indicate that the receptors were functionally active at an early stage of development. Application of the glutamate receptor blockers d-2-amino-5-phosphonovalerate (AP5) and 6-cyano-7-nitroquinoxaline (CNQX) to E17 olfactory bulb neurons after only 4 days in vitro resulted in a dramatic decrease in Ca2+ levels in 70% of 128 cells tested, suggesting that embryonic neurons after a short time in vitro can actively secrete glutamate. The presence of glutamate receptors on the long mitral cell dendrite suggests that it would be able to respond to release of its own excitatory transmitter, probably at an early stage of development. In the probable absence of other excitatory input to the secondary mitral dendrites, it would be the only excitatory "input." This autoexcitatory response would be modulated by release of GABA from olfactory interneurons occurring milliseconds after glutamate release induced by olfactory nerve activation. This novel type of neuronal microcircuitry would potentially amplify signal transmission and current spread along the long mitral dendrites and could play an important role in lateral inhibition of olfactory neurons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have