Abstract
Short-term plasticity preserves a brief history of synaptic activity that is communicated to the postsynaptic neuron. This is primarily regulated by a calcium signal initiated by voltage dependent calcium channels in the presynaptic terminal. Imaging studies of CA3-CA1 synapses reveal the presence of another source of calcium, the endoplasmic reticulum (ER) in all presynaptic terminals. However, the precise role of the ER in modifying STP remains unexplored. We performed in-silico experiments in synaptic geometries based on reconstructions of the rat CA3-CA1 synapses to investigate the contribution of ER. Our model predicts that presynaptic ER is critical in generating the observed short-term plasticity profile of CA3-CA1 synapses and allows synapses with low release probability to operate more reliably. Blocking the ER lowers facilitation in a manner similar to what has been previously characterized in animal models of Alzheimer’s disease and underscores the important role played by presynaptic stores in normal function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.