Abstract

Long-term potentiation has previously been studied with electrophysiological techniques that do not readily separate presynaptic and postsynaptic contributions. Changes in exocytotic-endocytotic cycling have now been monitored at synapses between cultured rat hippocampal neurons by measuring the differential uptake of antibodies that recognize the intraluminal domain of the synaptic vesicle protein synaptotagmin. Vesicular cycling increased markedly during glutamate-induced long-term potentiation. The degree of potentiation was heterogeneous, appearing greater at synapses at which the initial extent of vesicular turnover was low. Thus, changes in presynaptic activity were visualized directly and the spatial distribution of potentiation could be determined at the level of single synaptic boutons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.