Abstract

The pressure-induced structural phase transition of rhenium monocarbon (ReC) is investigated via the projector augmented wave (PAW) method with the generalized gradient approximation (GGA). Using the first-principles calculations, the equilibrium structural parameters of ReC in rocksalt (NaCl), cesium chloride (CsCl), zinc blende (ZB), wurtzite (WZ), nickel arsenide (NiAs) and tungsten carbide (WC) types are successfully obtained, and the results are well consistent with other theoretical data. It is firstly noted that WC-ReC translates into CsCl-ReC at 510.50 GPa by analyzing the enthalpy difference versus pressure. From the calculated elastic constants, the aggregate elastic modulus (B, G, E), the Poisson's ratio (σ) and the Debye temperature ΘD of WC-type are also derived. It is observed that all the data of WC-ReC obtained increase monotonically with increasing pressure. Meanwhile, the thermodynamic properties of WC-ReC under high temperature and high pressure are investigated applying nonempirical Debye model in the quasi-harmonic approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.