Abstract

The geometrically frustrated pyrochlore Eu2Sn2O7 is an insulator with slight trigonal lattice distortion at ambient condition. High pressure is applied to this system to investigate the responses of structural evolution, optical emission and electrical transport properties. In situ high pressure synchrotron X-ray diffraction, Raman spectroscopy, and photoluminescence studies are performed in Eu2Sn2O7 up to 31.2 and 34.1 GPa, respectively. The abrupt change of the oxygen atomic position without breaking the crystal symmetry is accompanied by disappearing of Raman mode involving SnO6 octahedron distortion around 17.8 GPa. It indicates a pressure-induced second-order iso-structural transition, which suppresses the trigonal distortion in the SnO6 octahedron but enhances the local symmetry distortion of EuO8 hexahedron. Anomalous luminescence of the Eu3+ 4f–4f transition is observed, which confirms the enhancement of EuO8 hexahedral distortion at high pressure region. In situ high-pressure electrical transport...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.