Abstract

Adhesive behavior in blends of high molecular weight poly(N-vinyl pyrrolidone (PVP) with a short-chain, liquid poly(ethylene glycol) (PEG) has been studied using a 180° peel test as a function of PVP-PEG composition and water vapor sorption. Hydrophilic pressure-sensitive adhesives are keenly needed in various fields of contemporary industry and medicine, and the PVP-PEG blends, pressure-sensitive adhesion has been established to appear within a narrow composition range, in the vicinity of 36 wt% PEG, and it is affected by the blend hydration. Both plasticizers, PEG and water, behave as tackifiers (enhancers of adhesion) in the blends with glassy PVP. However, PEP alone is shown to account for the occurrence of adhesion, and the tackifying effect of PEG is appreciably stronger than that of sorbed water. Blend hydration enhances adhesion for the systems that exhibit an apparently adhesive type of debonding from a standard substrate (at PEG content less than 36 wt%), but the same amounts of sorbed water are also capable of depressign adhesion in the PEG-overloaded blends, where a cohesive mechanism of adhesive joint failure is typical. The PVP-PEG blend with 36% PEG couples both the adhesive and cohesive mechanisms of bond rupture (i.e., the fibrillation of adhesive polymer under debonding force and predominantly adhesive locus of failure). Blend hydration effect on adhesion has been found to be reversible. The micromechanics of adhesive joint failure for PVP-PEG hydrogels involves the fibrillation of adhesive polymer, followed by fibrils stretching and fracturing as their elongation attains 1000-1500%. Peel force to rupture the adhesive bond of PVP-PEG blends increases with increasing size of the tensile deformation zone, increasing cohesive strength of the material, and increasing tensile compliance of the material, obeying the well-known Kaelble equation, derived originally for conventional rubbery pressure-sensitive adhesives. The major deformation mode upon peeling the PVP-PEG adhesive from a standard substrate is extension, and direct correlations have been established between the composition behaviour of peel strength and that of the total work of viscoelastic strain to break the PVP-PEG films under uniaxial drawing. As a result of strong interfacial interaction with the PET backing film, the PVP-PEG adhesive has a heterogeneous two-layer structure, where different layers demonstrate dissimilar adhesive characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call