Abstract

Titanium disulfide (TiS2) has drawn considerable attention in materials, physics, and chemistry thanks to its potential applications in batteries, supercapatteries and thermoelectric devices. However, the simplified and controlled synthesis of high-quality TiS2 remains a great challenge. In this study, a straightforward widely accessible approach to the one-step chemical vapor transport (CVT) process is presented. Meanwhile, combining high-pressure (HP) Raman spectroscopy measurements and first-principles calculations, the pressure-induced phase transition of TiS2 from P3̄m1 phase (phase I) to C2/m phase (phase II) at 16.0 GPa and then to P6̄2m phase (phase III) at 32.4 GPa was disclosed. The discovery of HP being within the Weyl semi-metallic phase represents a significant advancement towards understanding the electronic topological states, discovering new physical phenomena, developing new electronic devices, and gaining insight into the properties of elementary particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call