Abstract

FePS_33 is a prototype van der Waals layered antiferromagnet and a Mott insulator under ambient conditions, which has been recently reported to go through a pressure-induced dimensionality crossover and an insulator-to-metal transition. These transitions also lead to the appearance of a novel magnetic metallic state. To further understand these emergent structural and physical properties, we have performed a first-principles study using van der Waals and Hubbard UU corrected density functional theory including a random structure search. Our computational study attempts to interpret the experimental coexistence of the low- and intermediate-pressure phases and we predict a novel high-pressure phase with distinctive dimensionality and different possible origins of metallicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.