Abstract

We investigate the phase stability of Na${}_{1/2}$Bi${}_{1/2}$TiO${}_{3}$, a prototype lead-free relaxor material, under pressure. By means of total energy calculations within density functional theory, we study the pressure stability of several structures with polar and antipolar distortions, in-phase and out-of-phase tilts, and different chemically ordered configurations. Under positive (compressive) pressure an orthorhombic $Pbnm$-like phase is stabilized above 3 GPa. At negative (tensile) pressure a non-tilted polar $P4mm$-like phase is stable. At zero pressure two phases are coexisting. The local chemical configuration determines whether the high-pressure $Pbnm$-like or another tilted and polar $R3c$-like structure is favored. Thus, two different variants of pressure phase diagrams depending on the cation arrangement are obtained, which raises the question of the existence of a mixed phase ground state in the disordered system. We discuss the stability of the mixed phase state in terms of lattice and tilt misfits and possible shapes and ferroic properties of the coexisting regions with different average structures. Our results clearly support the view that there are chemically ordered nanoregions with their own local ferroic properties embedded in a chemically disordered ferroelectric matrix representing the ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.