Abstract

Xylitol, as a typical polyol, has a broad range of application prospects. However, the molecular states of xylitol under different environments are rarely reported until now. In this work, the state changes of xylitol molecules under high pressure were analyzed by Raman spectra. A Fermi resonance phenomenon in the fundamental mode of xylitol at 2945 (±0.06) cm−1 and 2955 (±0.41) cm−1 was observed at 0.99 GPa. The Fermi doublets possess the same symmetry and close energy levels, which had not been changed by pressures. However, the high pressure shortened the atomic distances and applied the extra disturbance, providing the necessary conditions for energy transfer. Besides, the Fermi doublets decoupling happened at 4 GPa due to the breaking of hydrogen bonding. This work provides an important reference for studying molecular states and weak interactions of polyols under high pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.