Abstract

Fermi resonance (FR), a prevalent phenomenon in molecules, has an important effect in spectrum analysis. As an effective way to change the molecular structure and tune symmetry, high-pressure techniques can often induce FR. Hydroquinone (HQ) is a hydrogen-bonded crystal that tends to form a solid inclusion compound with a suitable guest and has wide applications. Inthiswork, a high-pressure technique was used to investigate α-HQ using high pressure to tune the symmetry to produce FR. Raman and infrared spectra of α-HQ were investigated at ambient pressure, and then Raman spectra under high pressure of α-HQ were investigated up to 19.64 GPa. Results indicated that there were two phase transitions found at about 3.61 and 12.46 GPa. Fundamental FR was not present in α-HQ molecules at ambient pressure. At 3.61 GPa, the first-order phase transition occurred due to the pressure-induced symmetry change, resulting in two Raman modes at 831 cm−1 and 854 cm−1 with the same symmetry, thereby providing evidence that the fundamental FR phenomenon occurred. Furthermore, the pressure-induced changes of the FR parameters were elucidated. Thus pressure provided an effective way to study FR between two asymmetric species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.