Abstract

An effective interionic interaction potential is developed to discuss the pressure induced structural phase transformation and mechanical properties of InX (X = N, P, As) semiconducting compounds. The effective interionic potential consists of the long-range Coulomb and three-body interactions and the Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbour ions and the van der Waals interaction. The present calculations have revealed reasonably good agreement with the available experimental data on the phase transition pressures (Pt = 11.5, 10, 7.5 GPa) and the elastic properties of InX (X = N, P, As). The equation of state curves (plotted between V (P)/V(0) and pressure) for both the structures zincblende (B3) and rocksalt (B1) structures obtained by us are in fairly good agreement with the experimental results. The calculated values of the volume collapses [ΔV(P)/V(0)] are also closer to their observed data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.