Abstract

This paper discusses the high pressure-dependent crystal structure phase transformation and elastic behavior of ZnSe[Formula: see text]Te[Formula: see text] (x = 0.0, 0.2, 0.55, 0.81, 0.93 and 1.0) by speculating effective interionic interaction potential (EIoIP), that contains long-range type Coulomb force, short-range overlap repulsion of the Hafemeister and Flygare types and the van der Waals (vdW) interaction. The assessed values of structural phase transition pressure and the considerable volume discontinuity associated with the pressure–volume phase diagram support the structural phase transformation from zinc blende (B3) type to rock-salt (B1) type crystal structure. The equation of state curves (relationship between V(p)/V(0) and pressure in the pressure–volume phase diagram) for both the zinc blende (B3) and rock-salt (B1) structures is in reasonably good agreement with that of experimental observations. Moreover, systematic variations of the second-order elastic constants (SOEC) with pressure have been found to follow systematic trends showed by the other systems with B3 type to B1 type pressure-dependent structural phase transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call