Abstract
Two-dimensional transition metal dichalcogenides (TMDs) are important materials for promising electronic devices because they usually exhibit excellent and highly tunable electronic properties. Here, we report on the pressure-driven electronic phase transition in a TMD 1T-Co1.06Te2. High-pressure transport measurements reveal a sign reversal of the Hall coefficients at a critical point of P C ∼ 32 GPa, evidencing a transition from hole band(s) dominated transport into one that is dominated by electron band(s). Synchrotron x-ray diffraction experiments demonstrate that no structural phase transition occurs below 46.3 GPa, indicating an electronic origin of the transition. Moreover, a kink anomaly of the lattice constant ratio c/a is also observed at P = P C. These results might indicate a Lifshitz transition which refers to a change of Fermi surface topology in absence of structural transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.