Abstract

Experimental investigations were performed on the single-phase flow and heat transfer characteristics through the silicon-based trapezoidal microchannels with a hydraulic diameter of 194.5 µm using Al2O3-H2O nanofluids with particle volume fractions of 0, 0.15% and 0.26% as the working fluids. The effects of the Reynolds number, Prandtl number and nanoparticle concentration on the pressure drop and convective heat transfer were investigated. Experimental results show that the pressure drop and flow friction of the nanofluids increased slightly when compared with that of the pure water, while the Nusselt number increased considerably. At the same pumping power, using nanofluids instead of pure water caused a reduction in the thermal resistance. It was also found that the Nusselt number increased with the increase in the particle concentration, Reynolds number and Prandtl number. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of Al2O3-H2O nanofluids through silicon microchannels were proposed for the first time. The agglomeration and deposition of nanoparticles in the silicon microchannels were also examined in this paper. It was found that the Al2O3 nanoparticles deposited on the inner wall of microchannels more easily with increasing wall temperature, and once boiling commenced, there is a severe deposition and adhesion of nanoparticles to the inner wall, which makes the boiling heat transfer of nanofluids in silicon microchannels questionable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call