Abstract
A general set of equations that govern global resistive interchange, resistive internal kink and resistive infernal modes in a toroidal axisymmetric equilibrium are systematically derived in detail. Tractable equations are developed such that resistive effects on the fundamental rational surface can be treated together with resistive effects on the rational surfaces of the sidebands. Resistivity introduces coupling of pressure driven toroidal instabilities with ion acoustic waves, while compression introduces flute-like flows and damping of instabilities, enhanced by toroidal effects. It is shown under which equilibrium conditions global interchange, internal kink modes or infernal modes occur. The m = 1 internal kink is derived for the first time from higher order infernal mode equations, and new resistive infernal modes resonant at the q = 1 surface are reduced analytically. Of particular interest are the competing effects of resistive corrections on the rational surfaces of the fundamental harmonic and on the sidebands, which in this paper is investigated for standard profiles developed for the m = 1 internal kink problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.