Abstract
Semiconductor superlattices (SLs) have found widespread applications in electronic industries. In this work, a short-period SL structure composed of CdO and MgO layers was grown using a plasma-assisted molecular beam epitaxy technique. The optical property of the SLs was investigated by absorption measurement at room temperature. The ambient-pressure direct bandgap was found to be 2.76 eV. The pressure dependence of fundamental bandgap has been studied using a diamond anvil cell technique. It has been found that the band-to-band transition shifts toward higher energy with an applied pressure. The bandgap of SLs was varied from 2.76 to 2.87 eV with applied pressure varied from 0 to 5.9 GPa. The pressure coefficient for the direct bandgap of SLs was found to be 26 meV/GPa. The obtained experimental result was supported by theoretical results obtained using density functional theory calculations. The volume deformation potential was estimated using the empirical rule. We believe that our findings may provide valuable insight for a better understanding of {CdO/MgO} SLs toward their future applications in optoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.