Abstract

At basaltic volcanoes, the sources of long-period and very-long-period seismicity and acoustic signals are frequently described in terms of fluid dynamic processes, in particular the formation and ascent of gas slugs within the magma column and their bursting at the surface. To investigate pressure changes associated with these processes, two-phase flow experiments have been carried out in vertical and inclined pipes with both single gas slugs and a continuously supplied gas phase. The ascent of individual gas slugs is accompanied by strong dynamic pressure variations resulting from the flow of liquid around the slug. These dynamic transients generate sub-static pressures below the ascending slug in viscosity-controlled systems, and produce super-static pressures when the slug reaches the surface and motion ceases in inertia-dominated systems. Conduit inclination promotes a change of regime from bubbly to slug flow and favours an increase in size and velocity of the slugs at the expense of their frequency of occurrence during continuously supplied two-phase flow. The experimental pressure data support previous theoretical analyses of oscillatory sources in ascending slugs as the slugs approach the surface and burst. Pressure oscillations are also observed during the release of gas slugs and in their wake region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.