Abstract

This paper presents the evolution process of pressure angles from planar parallel mechanisms to spatial parallel mechanisms. Manipulability and condition number, which are frequently used in the optimum design of parallel mechanisms, are introduced from serial robots at first. Then, both theoretical analysis and practical experiences demonstrate that these concepts seem imperfect when they are used in parallel mechanisms. For this reason, this paper introduces the pressure angles in planar 4-bar mechanisms to spatial parallel mechanisms, which include redundant parallel mechanisms. Two kinds of pressure angles extracted from the determinant of direct and indirect Jacobian matrices are investigated. Moreover, two comprehensive and visible global performance indices are defined, showing the advantages in evaluating the workspace, singularity and motion/force transmission capabilities. With a 2-DOF planar and a 3-DOF spatial parallel mechanism as examples, the application of the performance indices is investigated and compared with the condition number at last. The proposed concept can be extended to other spatial parallel mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.