Abstract

We show that the quasi-skutterudite superconductor Sr(3)Ir(4)Sn(13) undergoes a structural transition from a simple cubic parent structure, the I phase, to a superlattice variant, the I' phase, which has a lattice parameter twice that of the high temperature phase. We argue that the superlattice distortion is associated with a charge density wave transition of the conduction electron system and demonstrate that the superlattice transition temperature T(*) can be suppressed to zero by combining chemical and physical pressure. This enables the first comprehensive investigation of a superlattice quantum phase transition and its interplay with superconductivity in a cubic charge density wave system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.